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Abstract

Currently, there are existing methods that are able to
construct 3D meshes of objects when given 2D image in-
puts. However, there is room to improve upon these models
by adding in a component of object recognition that we as
humans use to perceive the world around us: depth. Our
goal is to build upon the Pixel2Mesh work by expanding
its capacity from utilizing RGB input images to RGB-D in-
put images. These RGB-D images were created using the
MiDaS model, and were fed into a modified Pixel2Mesh
to create 3D meshes. While our initial approach involving
leveraging differentiable rendering was initially unsuccess-
ful, we found that when using the depth-aware Pixel2Mesh,
training results exhibited faster convergence and validation
results indicated stronger total loss minimization and com-
parable voxel loss performance.

1. Introduction
Current advances in the computer vision space have be-

come increasingly accurate in the detection of objects when
given 2D inputs. Tools are readily available for accurately
and efficiency performing 2D semantic and instance seg-
mentation. However, the world around us lies in 3D, and
there is still much work to be done moving forward in de-
veloping a computational understanding of 3D shapes and
objects.

Currently, there has been prior work done to reconstruct
a mesh - which is a collection of vertices, edges, and faces
- of a single object or multiple objects located within a
2D image. While these models currently exist, the goal of
our work is to enhance such methods to more accurately
construct these meshes. We aim to reconstruct better 3D
meshes using 2D image inputs by taking depth information
into consideration to build up an accurate representation of
how the object takes form in the real world.

With the ubiquity and rising prevalence, as well as re-
liance on automated robotic systems, creating models that
are both practical and viable upon implementation has been
extremely important. The idea of autonomous driving and

robotic assistants seems not too far out, and the component
of vision that drives many of its key functionalities plays a
crucial role to their success as an innovation.

Mesh R-CNN is one big research advancement in this
space, offering the capability of constructing topologically
accurate 3-dimensional meshes given a 2-dimensional RGB
image [5]. The idea is that it is possible to build on top of
Mask R-CNN (a 2D object recognition system) and create
voxel representations of 3 dimensional objects within im-
ages, and eventually translate these voxel representations
into a mesh using a GNN-based approach.

Figure 1. Overview diagram of the Mesh R-CNN process. Figure
taken from Gkioxari, Malik, and Johnson [5]

In this project, we seek to expand upon existing mod-
els, namely Mesh R-CNN, by working towards enhancing
its performance through depth aware inputs. The goal is
to expand the original 3 channel RGB input image to a 4
channel RGB-D input image and log potential changes in
performance as a result.

2. Related Work
Our work can be seen as an extension to the work done

in creating Pixel2Mesh [14]. In this paper, the researchers
aimed to reconstruct a 3D shape using a triangular mesh
when given a single RBG input image. This work was
unique in representing the 3D mesh using a graph CNN,
producing the desired geometry by taking an ellipsoid shape
and progressively deforming it to best match the desired 3D
shape.

The results from this paper both qualitatively and quan-
titatively outperform prior work, such as representing the
output of the neural network as a volume as done by Choi
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et al. [2] or as a point cloud as done by Fan et al [4]. To un-
derstand why Pixel2Mesh outperformed prior work, we see
that the approach adopts the idea of producing progressively
more vertices, which generates a smoother output that better
captures 3D details and also results in better loss minimiza-
tion than a volume or point cloud based approach.

Figure 2. Diagram depicting the Pixel2Mesh approach of progres-
sively generating the desired mesh. Figure taken from Wang et
al. [14]

Similar to Mesh R-CNN and Pixel2Mesh, PIFuHD of-
fers high-fidelity 3d reconstruction of clothed humans from
a single image. The resolution high enough to recover de-
tails in the anatomy such as fingers, facial features and even
the details in clothes. This system used Pixelaligned Im-
plicit Function(PIFu) in addition to pixel-aligned prediction
module and an occupancy probability field prediction mod-
ule. [12]

Figure 3. Given a high-resolution single image of a person, PI-
FuHD recovers highly detailed 3D reconstructions of clothed hu-
mans at 1k resolution. Figure taken from Saito et al. [12]

We also build on top of the work done by Ranftl et al.
They focused on improving monocular depth estimation,
ensuring that there was heightened performance regardless
of depth range and scale of the object in consideration [10].
This was done by pretraining encoders, learning with multi-
ple objectives on varied datasets to produce a very high ca-
pacity for model generalization. The final model, MiDaS,
is established as the state of the art when looking at zero-
shot performance in comparison to other work with similar
objectives.

More traditional methods of 3D reconstruction have used
binomial stereo vision. They imitate the human visual sys-
tem and generate depth maps as results. The idea of using
methods that are more similar to human vision have been
explored. This is usually accomplished using additional
hardware that augments the data. [16]

Figure 4. Outputs of running MiDaS depth estimation model on
a random subset of single-view input images. Figure taken from
Ranftl et al. [10]

3D for Free is a crossmodal Transfer Learning method
using HD Maps. It uses a large unlabeled dataset of images
and LiDAR. The dataset was manually mined using a Li-
DAR based object detector. The model was constructed to
produce 3D cuboids with varying confidence. The results
seemed to show that this was a promising approach to the
problem. [15]

Du2Net: Learning Depth Estimation from Dual-
Cameras and Dual-Pixels combines dual camera stereo and
dual-pixel sensor stereo. The authors’ work provides sub-
stantial improvements over similar previous works. They
do this by avoiding the inherent ambiguity caused by cer-
tain aperture problems. They also make the stereo baseline
orthogonal to the dual-pixel baseline. [17]

3. Methods

3.1. Differentiable Rendering

In order to provide further supervision on our generated
meshes, we considered differentiable rendering with Py-
Torch3D [11]. Once a mesh has been generated by our
model, we can use a differentiable rasterizer to render a
depth map of it. The error between the rendered depth map
and the “ground-truth” D channel of the RGB-D image can
then be measured. Importantly, as in MiDaS, this loss must
be scale-invariant. This would allow our model to take fur-
ther advantage of the RGB-D images by creating a mesh
that has the same depth characteristics as the input depth
map.

In order to meaningfully compare the rendered depth
maps with the ones from the input images, we need to ren-
der them from the same camera positions. So, we parsed
the image metadata from 3D-R2N2 and extracted camera
elevation, azimuth, and distance for each training example,
which could then be passed in to PyTorch3D’s differentiable
renderer.

Although we were able to render depth maps for each
generated mesh, we discovered more difficulties and were
unable to fully implement the scale-invariant depth loss.
First, MiDaS was trained on natural images and halluci-
nates a ground plane beneath the ShapeNet renderings. On
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the other hand, the PyTorch3D differentiable renderer sim-
ply marks all background points as −1, a sentinel value for
when there is no mesh face in a given pixel. Second, Mi-
DaS outputs an inverse depth map, where the closes pixels
are assigned the highest value. In contrast, PyTorch3D out-
puts a proper depth map, where closer pixels get smaller
values. We hope to investigate solving both of these prob-
lems simultaneously in future work.

Figure 5. Result of mesh reconstruction (top) compared to inverse
depth estimation image (bottom)

3.2. RGB-D Backbone

With regards to the coding libraries and packages used,
we employed PyTorch for creating the model architectures
[9], NumPy for data manipulation [6], and Matplotlib for
generating the figures used for both qualitative and quanti-
tative analysis [7].

Index Inputs Operation Output shape
(1) Input Image 137× 137× 3
(2) (1) ResNet-50 conv2 3 35× 35× 256
(3) (2) ResNet-50 conv3 4 18× 18× 512
(4) (3) ResNet-50 conv4 6 9× 9× 1024
(5) (4) ResNet-50 conv5 3 5× 5× 2048
(6) (5) Bilinear interpolation 24× 24× 2048
(7) (6) Voxel Branch 48× 48× 48
(8) (7) cubify |V | × 3, |F | × 3
(9) (2), (3), (4), (5), (8) Refinement Stage 1 |V | × 3, |F | × 3

(10) (2), (3), (4), (5), (9) Refinement Stage 2 |V | × 3, |F | × 3
(11) (2), (3), (4), (5), (10) Refinement Stage 3 |V | × 3, |F | × 3

Figure 6. High-level architecture of the ShapeNet version of Mesh
R-CNN

As a baseline, used the version of the Mesh R-CNN
model that was trained on the ShapeNet dataset. The
backbone feature extractor is ResNet-50 pretrained on Ima-
geNet which has 4 different convolutional layers. The voxel
branch of the model receives a bilinearly interpolated fea-
ture map from the last ResNet convolutional layer and pre-
dicts a voxel grid. The VertAlign operator concatenates fea-
tures from all of the ResNet-50 convolutional layers before
projecting to a single vector. The mesh refinement branch
has three parts. Each part has six graph convolution layers
organized into three residual blocks.

Index Inputs Operation Output shape
(1) Input conv2 3 features 35× 35× 256
(2) Input conv3 4 features 18× 18× 512
(3) Input conv4 6 features 9× 9× 1024
(4) Input conv5 3 features 5× 5× 2048
(5) Input Input vertex features |V | × 128
(6) Input Input vertex positions |V | × 3
(7) (1), (6) VertAlign |V | × 256
(8) (2), (6) VertAlign |V | × 512
(9) (3), (6) VertAlign |V | × 1024
(10) (4), (6) VertAlign |V | × 2048
(11) (7),(8),(9),(10) Concatenate |V | × 3840
(12) (11) Linear(3840 → 128) |V | × 128
(13) (5), (6), (12) Concatenate |V | × 259
(14) (13) ResGraphConv(259 → 128) |V | × 128
(15) (14) 2× ResGraphConv(128 → 128) |V | × 128
(16) (15) GraphConv(128 → 3) |V | × 3
(17) (16) Tanh |V | × 3
(18) (6), (17) Addition |V | × 3

Figure 7. Mesh R-CNN mesh refinement stage architecture

The voxel loss is the binary cross-entropy between the
predicted voxel occupation probabilities and the true voxel
occupancies. The mesh loss is defined over a finite set of
points. The mesh is represented by a point cloud. Point-
clouds P and Q are sampled from the ground truth and the
intermediate mesh predictions from the model. Chamfer
distance and the normal distance between two pointclouds
is defined as follows:

Lcham(P,Q) = |P |−1
∑

(p,q)∈ΛP,Q

∥p− q∥2 + |Q|−1
∑

(q,p)∈ΛQ,P

∥q − p∥2 (1)
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Lnorm(P,Q) = −|P |−1
∑

(p,q)∈ΛP,Q

|up · uq | − |Q|−1
∑

(q,p)∈ΛQ,P

|uq · up|. (2)

These are used as the losses for the mesh. This model
was trained for 25 epochs using Adam with learning rate
10−4 and 32 images per batch on 8 Tesla V100 GPUs.

To allow Mesh R-CNN to take RGB-D images as input,
we changed the first ResNet layer to learn four-channel fil-
ters instead of three-channel filters. To take advantage of
pretraining, we will do so by copying over the weights of
for the first three channels and only train the fourth from
scratch. This allows us to build off the existing weights, it-
eratively improving them as the model is further trained on
the RGB-D input images.

3.3. Mesh Refinement Head

After passing the RGB-D image through the backbone,
we use the learned image features to produce a mesh.
After predicting a rough voxelization of the object, we
convert to a mesh representation using Mesh R-CNN’s
cubify. Then, three “message-passing” graph neural net-
work (GNN) layers are used to refine the mesh vertices to
match the target shape. It does so by updating node repre-
sentations with the following update rule:

f ′
i = (W0fi +

∑
j∈N(i)

W1fj ,

where W0 and W1 are learned weight matrices and N(i)
indicates the neighborhood of node i.

4. Dataset and Features

Figure 8. ShapeNet renderings from the chair, laptop, bench, and
airplane categories

We will train our model on two datasets: ShapeNet Core
[1] (along with renderings from R2N2 [3]) and Pix3D [13].
ShapeNet Core consists of over 50,000 3D meshes, which

Figure 9. Natural images of IKEA meshes from Pix3D

Figure 10. Pix3D image distribution across categories

Figure 11. Pix3D mesh distribution across categories

R2N2 provides rendered images of. Pix3D provides an-
other 10,000 3D meshes of IKEA furniture, each paired
with a real-life photo. Because of the in-the-wild nature
of Pix3D’s images, it serves as a more difficult benchmark
than ShapeNet, whose images are purely synthetic.

One of our main goals is to assess the impact of depth in-
formation in 3D mesh reconstruction. However, the images
in these datasets are purely RGB. Thus, as a preprocessing
step, we use the Tiefenrausch method [8] to predict each
image’s depth map. We then stack the depth maps onto the
original images, resulting in four-channel RGB-D images.

5. Results

Our initial unsuccessful mesh reconstruction involved
creating a custom loss that tracked the accuracy of the gen-
erated depth estimation predictions. However, the gener-
ated images were qualitatively and quantitatively innaccu-
rate, and the model exhibited lower loss the less weight we
assigned to the depth loss term. This is because the loss
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Figure 12. RGB-D image channels, where the depth channel is
predicted by the Tiefenrausch method

stagnation meant that the depth loss was actually detract-
ing from the performance of the model when utilizing the
differentiable rendering approach, and the lower weighting
was performing better simply because it caused the depth
loss to approach zero (hence having less/negligible impact
on the ouptut).

As a result, we switched our approach to tracking the
performance of the depth-aware Pixel2Mesh model. Af-
ter preprocessing the dataset (as described earlier), we were
able to compare our baseline and experimental models. The
baseline model was simply running Pixel2Mesh on regu-
lar RGB input images, replicating the work done by Wang
et al [14]. Our custom depth-aware Pixel2Mesh model had
the ability to take in 4 channels, one of which was generated
by the MiDaS model, and was trained accordingly.

Figure 13. Total loss plotted over 300 batch updates using RGB
input images.

As evidenced by the above figures, we see that when
adding the depth channel to the input images, the model
was able to converge slightly faster when training. The fi-
nal validation losses after training over 300 epochs was 0.51
for the baseline Pixel2Mesh model and 0.39 for the depth-
aware Pixel2Mesh model, showing that not only was there
faster convergence, but lower overall loss on the unseen data
as well.

We see a similar trend when plotting the voxel loss. Once
again, adding the depth channel resulted in a slightly faster
convergence, however for the validation loss, the difference

Figure 14. Total loss plotted over 300 batch updates using RGB-D
input images.

Figure 15. Voxel loss plotted over 300 update steps using RGB
input images.

Figure 16. Voxel loss plotted over 300 update steps using RGB-D
input images.

between the baseline and depth-aware models was negligi-
ble and thus performance was considered to be comparable.
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Model Chamfer Dist. (with RGB) (with RGB-D)
Pixel2Mesh 4.915 3.707

Mesh R-CNN 4.729 4.791

Table 1. Total test set Chamfer distance after training for 4 epochs
on train set

6. Conclusion and Future Work

Another possible extension to our research is to construct
colored meshes that accurately represent the textures and
materials that appear in the images. Since we represent the
meshes as graphs, our idea is to incorporate color informa-
tion as an additional node feature. Thus, as supervision for
our color predictions, we need the meshes in the datasets to
have vertex colorings. However, the ShapeNet and Pix3D
meshes are colored in a variety of ways, including via face
colorings and texture images. To account for this, we could
use Blender to “bake” vertex colors into each mesh. To
enable Mesh R-CNN to predict the color of each vertex,
we plan to increase the dimension of the node features pre-
dicted by the mesh refinement stage. Instead of predicting
3-dimensional features, we will predict 6-dimensional fea-
tures, where the first three correspond to the vertex coordi-
nate and the second three correspond to RGB values. Using
this approach, we could reconstruct 3D meshes that better
represent how the object appears in the real world.

We also plan to continue the unfinished work on using
differentiable rendering and the depth images during train-
ing. We hope to overcome the aforementioned roadblocks
and hypothesize that due to the additional information fed
in during training time, it is likely to outperform the results
exhibited by the current depth-aware Pixel2Mesh.

7. Contributions and Acknowledgements

KJ worked on creating the custom loss function that in-
corporated depth. RM worked on modifying the Mesh R-
CNN model to take a depth dimension in addition to RGB.
KJ, RM, and JQ wrote the paper. JQ write MiDaS depth es-
timation scripts to compute RGB-D images and correspond-
ingly re-designed the Mesh R-CNN dataset class, wrote
training and evaluation scripts as well as differentiable ren-
dering code.

Our approach was built on top of code from Ranftl et al.
and Gkioxari et al.
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